

ASX & Media Release 20 August 2020

ASX Symbol ARL

Ardea Resources Limited Suite 2 / 45 Ord St West Perth WA 6005

PO Box 1433 West Perth WA 6872

Telephone

+61 8 6244 5136

Email ardea@ardearesources.com.au

Website

www.ardearesources.com.au

Directors

Mat Longworth Non-Executive Chair

Andrew Penkethman Managing Director & CEO

lan Buchhorn Technical Executive Director

Executive Management

Sam Middlemas Company Secretary & CFO

Matt Painter General Manager Exploration

Issued Capital

Fully Paid Ordinary Shares 117,300,435

Directors/Employee Performance Rights 3,711,000

ABN 30 614 289 342

Gold Exploration Update

- Final results returned from the first RC drilling program of the Aphrodite North target area, complementing high-grade results from initial holes.
 - Confirmation of primary orogenic gold mineralisation on all four drill lines, associated with strong pyrite-biotite-chlorite-calcite altered dolerite.
 - Final hole, AANR0007: 2m at 2.40g/t Au from 140m.
 - Complements previously reported results from earlier holes (ASX release 13 August 2020) including:
 - AANR0001: 6m at 3.60g/t Au from 44m
 - AANR0001: 8m at 4.94g/t Au from 172m to end of hole
 - AANR0002: **10m at 1.52g/t Au** from 76m.
 - Total strike length of the Aphrodite North Line ~1,240m is especially encouraging, considering all mineralisation and anomalism is completely obscured at surface.
 - o 2,600m follow-up RC program to commence early September.
 - Metallurgical sampling program initiated.
- Project assessment of the **Bulong Nickel Project** has identified multiple gold targets, with recent highlights including:
 - Multiple soil geochemical gold targets identified in areas covered by historic nickel drilling that did not assay for gold. Ardea has sourced the historic drill pulps and submitted these for assay as a first-pass "drill evaluation".
 - Mapping and rock-chip sampling at historic workings is current, with the first evaluation area being Taurus with outcropping gold mineralisation defined, including:
 - Main Lode samples from background up to 118.0g/t Au
 - Rediscovered Extension Lode assays from background up to 52.4 g/t Au
 - Other samples from subsidiary old workings from background up to 29.9g/t Au.
 - The sampling programs are designed to define gold mineralisation and controls to assist with drill planning.

Ardea's tenure encapsulates one of the developed world's largest sustainable nickel-cobalt resources. Some 4,000km² of this tenure also corresponds to some of the most prospective elements of the Eastern Goldfields province for hosting orogenic gold mineralisation. Ardea's focus on the gold endowment of its tenure aims to streamline and maximise efficiencies at the Goongarrie Nickel-Cobalt Project (GNCP) as well as the other parts of the broader Kalgoorlie Nickel Project (KNP).

Gold potential throughout the Kalgoorlie Nickel Project tenure

Ardea's gold focus is firmly on its existing tenure which is held because it contains extensive nickel-cobalt resources. In particular, gold has a strong spatial association with crustal-scale fault structures termed Tectonic Zones, which appear to control emplacement of both nickel and gold mineralisation. Ardea has 100%-owned, granted tenure including Mining Leases over some 110km of cumulative strike of the Bardoc, Goddard, Emu and Keith Kilkenny Tectonic Zones.

The Company will consider expanding its footprint to utilise its extensive gold expertise and applying it to gold opportunities that lie adjacent to existing tenure. In some cases, such opportunities hold logistical upside for both gold and nickel-cobalt mining, in others it may simply be an opportunity beneficial to the Company that lies within our sphere of influence.

Such opportunities are apparent through Ardea's regional-scale modelling of the gold prospectivity and endowment throughout the Eastern Goldfields (Figure 1). Opportunities are identified through a scientifically robust gold target generation technique, comprising major fault systems and interconnected fault networks, prone and indicator rock types, spatial cyclicity of gold mineralisation, and detailed geochemistry and geophysics.

Opportunities arise where Ardea target features align and then overlap with limited or ineffective historic exploration, a lack of historic exploration, or where such areas show extensive (though not necessarily deep) transported cover.

Corporate opportunities with the gold assets

It would be remiss of Ardea not to maximise gold discovery on its ground simply from a financial point of view. This is particularly true of the granted mining tenure where there are significantly fewer hurdles to establishing a mining operation, effectively enabling fast-tracking of a new gold mining operation should significant mineralisation be identified.

Ardea's target generation sometimes highlights such targets on ground adjacent to our tenure and actively engages with its neighbours and the mining industry of the Kalgoorlie-Boulder region. Shareholders will be informed if and when any such opportunities may be realised.

With the profusion of gold targets being generated by the current work programs, consideration will be given to a corporate separation of the Ardea WA gold and nickel assets, along the lines of the Ardea 2019 spin-out of the NSW gold assets into Godolphin Resources Limited. If such were to crystallise, Ardea shareholders would receive an *in specie* share distribution as they did for Godolphin. Please refer to cautionary note regarding forward-looking information on page 8.

Gold exploration and discovery to benefit development of the GNCP

The over-riding framework for developing the nickel and cobalt of the GNCP is sustainability within the Lithium Ion Battery and Electric Vehicle sectors, something for which metal suppliers in wet tropical rain-forests have challenges. Any future gold mining operation within the GNCP will be beneficial to minimising the environmental footprint.

Forward, high-level mining schedules were first established for the GNCP as part of the 2018 Pre-Feasibility Study and continue to be refined with ongoing work. Part of this schedule is the optimal location of necessary infrastructure. So is the backfilling of pits as part of rehabilitation post-mining which also reduces the required footprint for tailings dams, waste dumps and stockpiles.

Ardea has the option to consider toll treatment of existing and new gold discoveries, but can also consider standalone development if sufficient project scale is determined. Any development for the gold projects, is also expected to benefit potential future development of nickel-cobalt resources by utilising common infrastructure.

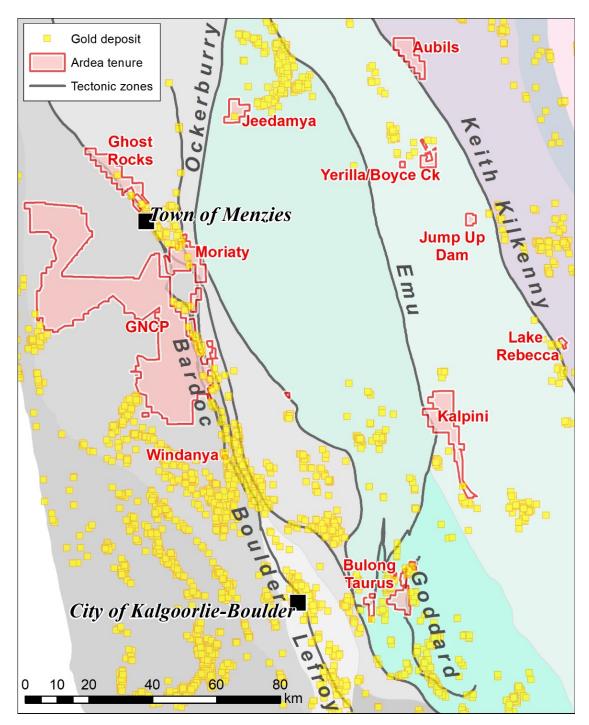


Figure 1 – The distribution of Ardea's KNP tenure (red), showing the GNCP and other parts of the KNP. All of this tenure contains nickel-cobalt resources, and most is within 100km of Kalgoorlie.

Last results from the first RC program in the Aphrodite North area

Gold mineralisation was intercepted in the final hole to have assays returned from the recent RC drilling program in the Aphrodite North area. Results from AANR0007 were in line with visual expectations from logging and include:

- 2m at 0.87g/t Au from 76m
- 2m at 2.4 g/t Au from 140m.

The positive identification of primary orogenic gold mineralisation in all four widely-spaced (~320m spacing) lines drilled over the Aphrodite North area is very pleasing, providing a strike extent in excess of 1,420m (Figure 2). This is especially so considering that the mineralisation is blind and there were no indications of orientation or gold distributions apart from saprock distributions defined by the first-pass aircore program that immediately preceded this RC program. It is clear that the centre of the gold mineralisation system, based on currently available information, is located as predicted proximal to the 6666440mN section (holes AANR0001 and AANR0002 - ASX release 13 August 2020).

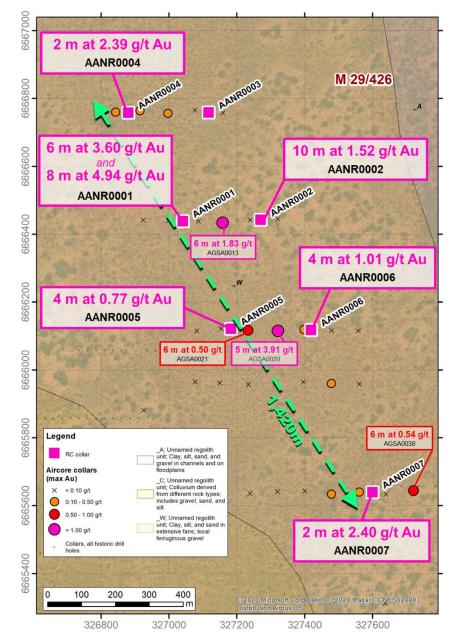


Figure 2 – Drill hole location plan showing RC drill-hole collar locations that have followed up gold anomalism from the first-pass aircore program at Aphrodite North. The entire target area is covered by transported material, and no historic anomalism has been recorded. Projection: GDA94 MGA Zone 51.

Now that the distribution of primary gold mineralisation is known at a very coarse scale, follow-up drilling can focus on refining lode orientations and extents, and focus on the shallower mineralised zones that would be most amenable to open-pit mining.

The program is still being finalised, but is likely to comprise:

- Section 6666440mN
 - o 2 to 4 shallower holes in scissor pairs
 - o 1 or 2 deeper holes to confirm and follow deeper mineralisation
 - Possibly an oblique hole to intersect possible lodes subparallel to the current drilling directions.
- Section 6666520mN (80m north of discovery section)
 - 2 to 4 shallower holes in scissor pairs
 - Section 6666360mN (80m south of discovery section)
 - o 2 to 4 shallower holes in scissor pairs

The rig is scheduled to commence the 2nd round of RC drilling in early September. Clearing for drill pads and new lines will commence in the coming days.

Rock-chip sampling and mapping in the Bulong-Taurus area

Fresh examination of outcropping mineralisation and historic workings at the Bulong-Taurus group of tenements is providing very encouraging results and new ideas on controls of gold mineralisation (Figure 3). Historic workings are locally extensive, suggesting significant historic gold mining activities. Field work is helping to shape early planning for future drill testing.

The Bulong-Taurus tenure contains around 6% of the Company's nickel-cobalt resources (by tonnage), containing **54.1Mt at 0.88% Ni and 0.05% Co**, for **476.1kt Ni and 28.8kt Co** (Ardea 2019 Annual Report). A strength of the resource is its proximity to Kalgoorlie (~30km east).

A total of 36 exploration targets have been identified over the tenure and are being systematically evaluated with surface sampling and mapping, followed by assaying of archived drill sample pulps where the targets have been subject to historic nickel drill exploration (as is commonly the case).

Historic shallow underground workings are evident at Taurus and Great Ophir, and a substantial state gold battery was located on Ardea tenure on the western shore of Lake Yindarlgooda.

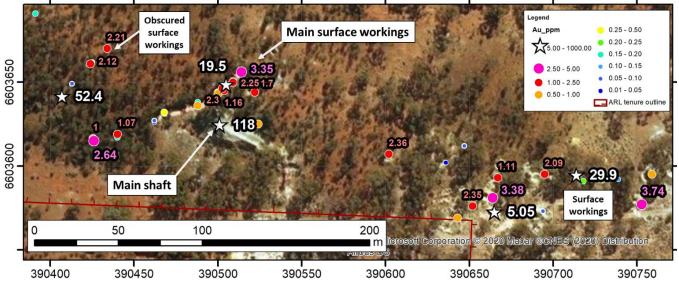


Figure 3 – Rock chip sampling from exposures around the Taurus and Great Ophir historic workings. Values are gold grades in grams per tonne. Projection: GDA94 MGA Zone 51.

Sample	Northing	Easting	Au (a/t)	Ag (a/t)	As (ppm)	Sb (ppm)	S (%)	Location description	Sample description
Main Lode	e (includin	g Main S	shaft)				(70)		
S301834	6603625	390501	118.0	3.2	b.d.	0.2	0.01	Headframe	Bucky quartz, vugs, sericite alteration, relic sulphide and oxide staining
S301838	6603649	390505	19.5	0.2	90	1.2	0.02		Limonite sandstone with vein quartz and disseminated sulphides
S301833	6603656	390514	3.35	b.d.	30	0.3	0.01	Taurus Main Lode	Brecciated vein quartz, pyrite, sericite
S301853	6603615	390426	2.64	b.d.	20	0.4	0.01	Taurus Main Lode	Chlorite, vein quartz, fault gouge
Lode Exte	nsion (we	st)							
S301805	6603642	390407	52.4	0.4	b.d.	0.3	0	Taurus Repeat Lode	Bucky quartz, potential repeat of Main Lode
S301809	6603670	390434	2.21	b.d.	b.d.	0.3	0		Bucky quartz, limonite + carbonate filled vugs
S301807	6603661	390424	2.12	b.d.	10	0.3	0		Bucky quartz, limonite + carbonate filled vugs
Other wor	kings								
S301863	6603595	390714	29.9	0.4	10	0.5	0.01		Quartz, laminated, brecciate, limonite staining
S301823	6603573	390665	5.05	b.d.	b.d.	0.5	0	Collapsed shaft	Vein quartz with sulphides
S301817	6603577	390753	3.74	0.5	b.d.	0.2	0	Shaft	Bucky quartz with limonite staining
S301824	6603581	390664	3.38	0.1	30	0.3	0	Collapsed shaft	Vein quartz, sericite, limonite
S301939	6603096	388921	2.47	b.d.	115	0.7			Sheared saprolite lower
S301861	6603607	390602	2.36	0.2	b.d.	0.4	0.01		Bucky vein quartz, limonite staining
S301826	6603576	390652	2.35	b.d.	50	0.5	0.04		Vein quartz, brecciate, oxides

Table 1 – Listing of gold rock chip results from the Taurus and Great Ophir area, by gold grade.

Rock-chip results

Significant effort has gone into defining controls on gold mineralisation at the Taurus and Great Ophir workings at Bulong. Several historic workings have been rediscovered and sampled (Figure 3 and Table 1). In particular, an apparent repeat structure of the main surface workings as the Extension Lode recorded several notable gold assays, including one as high as **52.4 g/t Au** from quartz veining. Fifty four rock chip samples were collected during the mapping program (Appendix 3) with 22 samples (40%) 1g/t Au or greater and the average grade for all samples collected in this program was 4.86g/t Au.

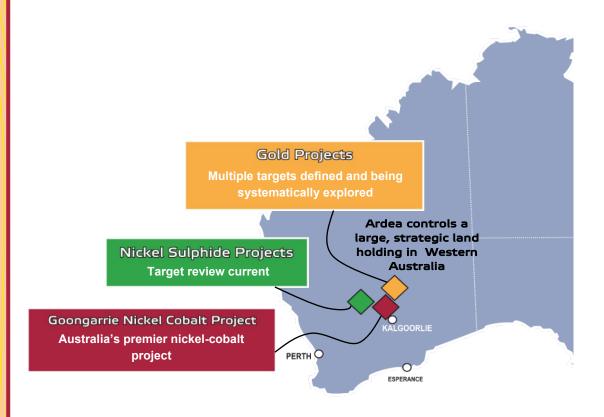
Mapping has identified several other possible repeats as well as providing orientation and shear sense indicators. This information will be used to complement historic drill data, which is presently being compiled in detail, and other historic datasets. It is expected that 3D models will be constructed from these datasets to enable definition of valid drill targets.

Elsewhere in the Bulong-Taurus group of tenements, assessment is ongoing of a number of gold targets, with anomalism identified from historic surface gold and pathfinder geochemistry and the recent recovery of nugget gold by prospectors.

Several of these targets have been covered by historic nickel-cobalt drilling that did not assay for gold and pathfinder elements, prompting location of and sampling of drill historic pulps archived in Ardea's West Kalgoorlie Operations Office. Results are pending but are expected to confirm gold anomalism for future follow-up.

Authorised for lodgement by the Board of Ardea Resources Limited.

For further information regarding Ardea, please visit www.ardearesources.com.au or contact:


Andrew Penkethman Managing Director and Chief Executive Officer Tel +61 8 6244 5136

About Ardea Resources

Ardea Resources (ASX:ARL) is an ASX-listed resources company, with a large portfolio of 100% controlled West Australian-based projects, focussed on:

- Development of the Goongarrie Nickel Cobalt Project, which is part of the Kalgoorlie Nickel Project, a globally significant series of nickel-cobalt deposits which host the largest nickel-cobalt resource in the developed world, coincidentally located as a cover sequence overlying fertile orogenic gold targets; and
- Advanced-stage exploration within its WA nickel sulphide and gold exploration tenure located on crustalscale structures in lake settings within the Eastern Goldfields world-class nickel-gold province.

Follow Ardea on social media

CAUTIONARY NOTE REGARDING FORWARD-LOOKING INFORMATION

This news release contains forward-looking statements and forward-looking information within the meaning of applicable Australian securities laws, which are based on expectations, estimates and projections as of the date of this news release.

This forward-looking information includes, or may be based upon, without limitation, estimates, forecasts and statements as to management's expectations with respect to, among other things, the timing and amount of funding required to execute the Company's exploration, development and business plans, capital and exploration expenditures, the effect on the Company of any changes to existing legislation or policy, government regulation of mining operations, the length of time required to obtain permits, certifications and approvals, the success of exploration, development and mining activities, the geology of the Company's properties, environmental risks, the availability of labour, the focus of the Company in the future, demand and market outlook for precious metals and the prices thereof, progress in development of mineral properties, the Company's ability to raise funding privately or on a public market in the future, the Company's future growth, results of operations, performance, and business prospects and opportunities. Wherever possible, words such as "anticipate", "believe", "expect", "intend", "may" and similar expressions have been used to identify such forward-looking information. Forward-looking information is based on the opinions and estimates of management at the date the information is given, and on information available to management at such time.

Forward-looking information involves significant risks, uncertainties, assumptions and other factors that could cause actual results, performance or achievements to differ materially from the results discussed or implied in the forward-looking information. These factors, including, but not limited to the ability to spin out a new gold focussed company, fluctuations in currency markets, fluctuations in commodity prices, the ability of the Company to access sufficient capital on favourable terms or at all, changes in national and local government legislation, taxation, controls, regulations, political or economic developments in Australia or other countries in which the Company does business or may carry on business in the future, operational or technical difficulties in connection with exploration or development activities, employee relations, the speculative nature of mineral exploration and development, obtaining necessary licenses and permits, diminishing quantities and grades of mineral reserves, contests over title to properties, especially title to undeveloped properties, the inherent risks involved in the exploration and development of mineral properties, the uncertainties involved in interpreting drill results and other geological data, environmental hazards, industrial accidents, unusual or unexpected formations, pressures, cave-ins and flooding, limitations of insurance coverage and the possibility of project cost overruns or unanticipated costs and expenses, and should be considered carefully. Many of these uncertainties and contingencies can affect the Company's actual results and could cause actual results to differ materially from those expressed or implied in any forward-looking statements made by, or on behalf of, the Company. Prospective investors should not place undue reliance on any forward-looking information.

Although the forward-looking information contained in this news release is based upon what management believes, or believed at the time, to be reasonable assumptions, the Company cannot assure prospective purchasers that actual results will be consistent with such forward-looking information, as there may be other factors that cause results not to be as anticipated, estimated or intended, and neither the Company nor any other person assumes responsibility for the accuracy and completeness of any such forward-looking information. The Company does not undertake, and assumes no obligation, to update or revise any such forward-looking statements or forward-looking information contained herein to reflect new events or circumstances, except as may be required by law.

No stock exchange, regulation services provider, securities commission or other regulatory authority has approved or disapproved the information contained in this news release.

Competent Person Statement

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Dr Matthew Painter, a Competent Person who is a Member of the Australian Institute of Geoscientists. Dr Painter is a full-time employee of Ardea Resources Limited and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Dr Painter consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Appendix 1 – Collar location data, Aphrodite North area

Drill hole	Туре	Depth (m)	Tenement	Grid	Easting (mE)	Northing (mN)	RL (mASL)	Dip (°)	Azimuth (°)
AANR 0001	RC	180	M29/426	MGA94_51	327040.7	6666438.7	379	-60	090
AANR 0002	RC	228	M29/426	MGA94_51	327269.8	6666442.6	379	-60	270
AANR 0003	RC	264	M29/426	MGA94_51	327116.4	6666758.9	379	-60	270
AANR 0004	RC	258	M29/426	MGA94_51	326880.2	6666758.9	379	-60	90
AANR 0005	RC	264	M29/426	MGA94_51	327182.2	6666121.6	379	-60	90
AANR 0006	RC	252	M29/426	MGA94_51	327418.3	6666118.0	381	-60	270
AANR 0007	RC	240	M29/426	MGA94_51	327599.7	6665639.8	381	-60	90

Collar location data for all new RC drill holes completed by Ardea Resources at Aphrodite North.

Appendix 2 – Assay results, Aphrodite North area

All assays from recent RC drilling program within the Aphrodite North area. Gold assays have been received for all drill holes. Auxiliary data is pending from the following:

 All XRF and LA-ICP-MS from drill holes AANR0003 to AANR0007. These entries have intentionally been left blank.

Abbreviations used: Au – gold, Ag – silver, As – arsenic, Sb – antimony, S – sulphur, m – metre, g/t – grams per tonne, ppm – parts per million, b.d. – below detection.

	From	То	Sample	Au	Ag	As	Sb	S
Hole	(m)	(m)	number	(g/t)	(g/t)	(ppm)	(ppm)	(%)
AANR0001	30	32	AR032381	b.d.	b.d.	10	8.6	0.125
AANR0001	32	34	AR032382	0.002	b.d.	10	10.4	0.113
AANR0001	34	36	AR032383	b.d.	b.d.	20	8.5	0.104
AANR0001	36	38	AR032384	0.004	b.d.	20	6	0.095
AANR0001	38	40	AR032385	0.006	b.d.	30	1.9	0.106
AANR0001	40	42	AR032386	0.006	b.d.	30	1.9	0.087
AANR0001	42	44	AR032387	0.006	0.2	20	1.4	0.077
AANR0001	44	46	AR032388	9.99	0.3	30	7.2	0.048
AANR0001	46	48	AR032390	0.388	0.1	b.d.	2	0.024
AANR0001	48	50	AR032391	0.428	0.1	20	6.9	0.036
AANR0001	50	52	AR032392	0.064	b.d.	60	6.3	0.036
AANR0001	52	54	AR032393	0.07	b.d.	10	2.2	0.028
AANR0001	54	56	AR032394	0.018	0.1	30	2.1	0.048
AANR0001	56	58	AR032395	0.094	b.d.	80	2.2	0.072
AANR0001	58	60	AR032396	0.034	b.d.	90	2.5	0.06
AANR0001	60 62	62 64	AR032397	0.012	0.3	90 110	2.1 5.8	0.05
AANR0001			AR032398	0.034	0.1			0.057
AANR0001 AANR0001	64 66	66 68	AR032400 AR032401	0.006	0.2	60 30	4.4	0.046
AANR0001 AANR0001	68	70	AR032401 AR032402	0.008	0.1	30	1.4	0.04
AANR0001 AANR0001	70	70	AR032402 AR032403	0.236	0.1	20	1.2	0.046
AANR0001 AANR0001	70	74	AR032403	0.004	0.2	10	9.4	0.048
AANR0001 AANR0001	74	74	AR032404 AR032405	0.004	0.2	20	9.4 6.5	0.054
AANR0001	76	78	AR032405	0.004	0.2	20	6.5	0.06
AANR0001	78	80	AR032407	0.004	0.1	20	4.1	0.063
AANR0001	80	82	AR032408	0.004	0.2	20	3.2	0.079
AANR0001	82	84	AR032410	0.004	0.2	20	3	0.079
AANR0001	84	86	AR032411	0.004	0.1	10	2.5	0.083
AANR0001	86	88	AR032412	0.496	0.1	b.d.	1.5	0.085
AANR0001	88	90	AR032413	0.004	0.1	10	2.1	0.085
AANR0001	90	92	AR032414	b.d.	0.2	10	10.9	0.091
AANR0001	92	94	AR032415	0.018	b.d.	10	5.3	0.087
AANR0001	94	96	AR032416	0.006	0.1	40	4.7	0.093
AANR0001	96	98	AR032417	0.004	b.d.	30	1.5	0.091
AANR0001	98	100	AR032418	0.006	0.1	40	0.9	0.089
AANR0001	100	102	AR032420	0.148	0.3	10	0.9	0.067
AANR0001	102	104	AR032421	0.006	0.2	10	8	0.072
AANR0001	104	106	AR032422	0.006	0.1	20	4.8	0.081
AANR0001	106	108	AR032423	0.012	0.2	50	4.5	0.089
AANR0001	108	110	AR032424	0.006	0.1	50	1.3	0.089
AANR0001	110	112	AR032425	0.096	0.2	80	2	0.075
AANR0001	112	114	AR032426	0.024	0.3	170	4.6	0.109
AANR0001	114	116	AR032427	0.77	0.6	190	6.8	0.097
AANR0001	116	118	AR032428	0.06	0.3	170	6	0.079
AANR0001	118	120	AR032430	0.14	0.4	100	5.4	0.081

	Hole	From	10	Sample	Au	Ag	AS	Sb	8
		(m)	(m)	number	(g/t)	(g/t)	(ppm)	(ppm)	(%)
	AANR0001	120	122	AR032431	0.238	0.6	30	1	0.093
	AANR0001	122	124	AR032432	0.068	0.6	30	0.8	0.097
	AANR0001	124	126	AR032433	0.04	0.3	20	0.7	0.079
	AANR0001	126	128	AR032434	0.078	0.3	30	2	0.145
	AANR0001	128	130	AR032435	0.032	0.2	10	0.7	0.117
	AANR0001	130	132	AR032436	0.042	0.2	30	1.5	0.127
	AANR0001	132	134	AR032437	0.036	0.3	20	1.6	0.19
- F	AANR0001	134	136	AR032438	0.028	0.3	20	2.3	0.261
- F	AANR0001	136	138	AR032440	0.03	0.4	20	2	0.25
	AANR0001	138	140	AR032441	0.018	0.2	10	1.5	0.279
- F	AANR0001	140	142	AR032442	0.02	0.3	20	1.6	0.491
	AANR0001	142	144	AR032443	0.024	0.3	30	1.8	0.518
	AANR0001	144	146	AR032444	0.016	0.5	30	14.5	0.402
	AANR0001	146	148	AR032445	0.112	0.4	40	9.3	0.347
	AANR0001	148	150	AR032446	0.038	0.3	50	6.7	0.286
	AANR0001	150	152	AR032447	0.796	0.3	50	5.1	0.184
	AANR0001	152	154	AR032448	0.008	0.1	40	9.8	0.333
	AANR0001	154	156	AR032450	0.014	0.2	40	10.6	0.305
	AANR0001	156	158	AR032451	0.014	0.2	40	5.1	0.309
	AANR0001	158	160	AR032452	0.012	0.2	30	3.4	0.216
	AANR0001	160	162	AR032453	0.022	0.2	30	1.3	0.624
	AANR0001	162	164	AR032454	0.178	0.1	20	2	0.374
	AANR0001	164	166	AR032455	0.02	0.3	50	8	0.36
	AANR0001	166	168	AR032456	0.046	0.4	60	2.3	0.39
	AANR0001	168	170	AR032457	0.106	0.6	270	2.4	0.483
	AANR0001	170	172	AR032458	0.09	0.2	550	7.6	0.428
	AANR0001	172	174	AR032460	11.6	0.9	1180	1.2	2.7
-	AANR0001	174	176	AR032461	7.24	0.5	1930	1.9	3.01
-	AANR0001	176	178	AR032462	0.504	0.1	510	5.6	0.574
-	AANR0001	178	180	AR032463	0.414	0.2	270	2.5	1.12
-	AANR0002	18	20	AR032467	0.016	b.d.	50	2.5	0.061
-	AANR0002	20	22	AR032468	0.226	b.d.	40	4.1	0.095
-	AANR0002	22	24	AR032470	0.012	b.d.	30	4.3	0.164
-	AANR0002	24	26	AR032471	0.012	b.d.	30	4.2	0.202
-	AANR0002	26	28	AR032472	0.006	b.d.	20	2	0.339
-	AANR0002	28	30	AR032472	b.d.	0.3	50	2.2	0.327
-	AANR0002	30	32	AR032474	b.d.	b.d.	90	5.3	0.192
-	AANR0002	32	34	AR032475	b.d.	b.d.	20	5.9	0.25
-	AANR0002	34	36	AR032476	b.d.	b.d.	b.d.	4.7	0.313
	AANR0002	36	38	AR032470 AR032477	b.d.	b.d.	10	2.6	0.313
-	AANR0002	38	40	AR032478	0.05	b.d.	b.d.	4.4	0.147
-	AANR0002 AANR0002	40	40	AR032478 AR032480	0.005	b.d.	10	5.3	0.147
	AANR0002 AANR0002	40	42	AR032460 AR032481	b.d.	b.d. b.d.	10	3	0.103
	AANR0002	42	44	AR032481 AR032482	b.d.	b.d.	b.d.	1.9	0.003
	AANR0002 AANR0002	44	40	AR032462 AR032483	b.d.	b.d. b.d.	b.d.	1.9	0.03
	MAINRUUUZ	40	40	ARUJZ40J	D.u.	D.u.	D.U.	1.4	0.029

Hele	From	То	Sample	Au	Ag	As	Sb	S
Hole	(m)	(m)	number	(g/t)	(g/t)	(ppm)	(ppm)	(%)
AANR0002 AANR0002	48 50	50 52	AR032484 AR032485	b.d. b.d.	b.d. b.d.	b.d. b.d.	1.4 3.8	0.021
AANR0002 AANR0002	52	54	AR032485	b.d.	b.d.	b.d.	1.3	0.02
AANR0002	54	56	AR032487	b.d.	b.d.	b.d.	1.0	0.016
AANR0002	56	58	AR032488	b.d.	b.d.	b.d.	0.9	0.018
AANR0002	58	60	AR032490	b.d.	b.d.	b.d.	0.6	0.02
AANR0002	60	62	AR032491	0.16	b.d.	b.d.	4.5	0.012
AANR0002	62	64	AR032492	0.286	b.d.	b.d.	4.4	0.014
AANR0002	64 66	66	AR032493	0.064	b.d.	b.d.	4.6	0.016
AANR0002 AANR0002	68	68 70	AR032494 AR032495	0.012	b.d. b.d.	b.d. 10	2 1	0.034
AANR0002	70	72	AR032496	0.124	b.d.	20	0.7	0.024
AANR0002	72	74	AR032497	b.d.	b.d.	10	0.7	0.036
AANR0002	74	76	AR032498	b.d.	b.d.	b.d.	2	0.034
AANR0002	76	78	AR032500	0.77	b.d.	b.d.	0.8	0.035
AANR0002	78	80	AR032501	2.88	b.d.	b.d.	2	0.034
AANR0002	80	82	AR032502	1.28	0.2	b.d.	9	0.04
AANR0002 AANR0002	82 84	84 86	AR032503 AR032504	1.88 0.792	b.d. b.d.	b.d. b.d.	10.1 4.5	0.04
AANR0002 AANR0002	86	88	AR032504	0.176	b.d.	b.d.	1.3	0.044
AANR0002	88	90	AR032507	0.122	b.d.	b.d.	1.1	0.030
AANR0002	90	92	AR032508	0.104	b.d.	10	1.4	0.059
AANR0002	92	94	AR032509	0.066	b.d.	20	1.4	0.067
AANR0002	94	96	AR032510	0.032	b.d.	10	1.3	0.083
AANR0002	96	98	AR032511	0.016	b.d.	40	2	0.071
AANR0002	98	100	AR032512	0.016	b.d.	20	1.6	0.067
AANR0002	100	102	AR032513	b.d.	b.d.	10	1.9	0.06
AANR0002	102	104	AR032514	b.d.	b.d.	b.d.	1.5	0.063
AANR0002 AANR0002	104	106 108	AR032516 AR032517	b.d. b.d.	b.d. b.d.	b.d. 60	1.8 1.1	0.057
AANR0002 AANR0002	108	110	AR032517 AR032518	0.08	b.d.	340	1.1	0.065
AANR0002	110	112	AR032519	0.484	0.1	220	1.2	0.033
AANR0002	112	114	AR032520	0.15	0.1	30	1.1	0.069
AANR0002	114	116	AR032521	0.146	b.d.	160	1.1	0.068
AANR0002	116	118	AR032522	0.016	0.1	10	1.2	0.12
AANR0002	118	120	AR032523	0.042	b.d.	b.d.	1.3	0.088
AANR0002	120	122	AR032524	0.016	0.1	20	3.5	0.092
AANR0002	122	124	AR032526	0.004	b.d.	30	3.6	0.099
AANR0002 AANR0002	124 126	126 128	AR032527 AR032528	0.006	b.d. 0.2	20 20	3.2 1.8	0.111 0.079
AANR0002 AANR0002	120	120	AR032529	0.022	0.2	10	1.0	0.079
AANR0002	130	132	AR032530	0.008	0.4	b.d.	1.2	0.206
AANR0002	132	134	AR032531	0.01	0.4	b.d.	1.7	0.206
AANR0002	134	136	AR032532	0.008	0.4	b.d.	1.5	0.152
AANR0002	136	138	AR032533	0.014	0.2	10	1.1	0.168
AANR0002	138	140	AR032534	0.004	b.d.	10	1.4	0.149
AANR0002	140	142	AR032536	0.006	0.1	10	0.9	0.14
AANR0002	142	144 146	AR032537	0.016	b.d.	120 220	1 1.1	0.15
AANR0002 AANR0002	144	140	AR032538 AR032539	0.706	5.8 0.2	690	1.1	1.97 0.955
AANR0002	140	140	AR032540	0.218	0.2	200	0.9	0.505
AANR0002	150	152	AR032541	1.04	0.3	290	1.4	0.845
AANR0002	152	154	AR032542	0.086	b.d.	50	5.7	0.232
AANR0002	154	156	AR032543	0.026	0.1	60	1	0.197
AANR0002	156	158	AR032544	0.364	0.3	140	1.3	0.574
AANR0002	158	160	AR032546	0.05	0.2	60	1.2	0.235
AANR0002	160	162	AR032547	0.004	0.1	40	1.3	0.275
AANR0002 AANR0002	162 164	164 166	AR032548 AR032549	0.002	0.1 b.d.	30 40	1.5 0.8	0.26
AANR0002	166	168	AR032550	0.130	0.1	40	1.3	0.275
AANR0002	168	170	AR032551	0.004	0.1	20	1.1	0.403
AANR0002	170	172	AR032552	0.156	0.2	10	1.3	0.759
AANR0002	172	174	AR032553	0.106	0.1	20	0.9	0.655
AANR0002	174	176	AR032554	0.168	0.1	20	2.2	0.687
AANR0002	176	178	AR032556	0.024	0.1	20	6.1	0.313
AANR0002	178	180	AR032557	0.008	b.d.	20	5.7	0.286
AANR0002 AANR0002	180 182	182 184	AR032558 AR032559	0.008	0.1 b.d.	20 30	2.5 5.3	0.284
AANR0002 AANR0002	182	184	AR032559 AR032560	0.008	b.d.	20	5.3 2.4	0.248
AANR0002	186	188	AR032561	b.d.	0.2	10	1.6	0.203
AANR0002	188	190	AR032562	0.008	0.1	20	6	0.282
AANR0002	190	192	AR032563	0.008	0.1	30	8.6	0.29
AANR0002	192	194	AR032564	0.036	0.1	30	2	0.289
AANR0002	194	196	AR032566	0.006	b.d.	30	7.6	0.333
AANR0002	196	198	AR032567	0.048	0.1	30	9.1	0.418
AANR0002 AANR0002	198 200	200 202	AR032568	0.02	b.d.	30 30	9.1 8.2	0.272
AANR0002 AANR0002	200	202	AR032569 AR032570	0.036	b.d. 0.1	40	8.2 7.3	0.27
AANR0002	202	204	AR032571	0.000	b.d.	20	3.1	0.323
AANR0002	206	208	AR032572	0.004	b.d.	30	6.8	0.277
AANR0002	208	210	AR032573	0.01	b.d.	40	8.2	0.259
AANR0002	210	212	AR032574	b.d.	b.d.	30	1.3	0.263
AANR0002	212	214	AR032576	b.d.	b.d.	50	0.9	0.251
AANR0002	214	216	AR032577	0.008	b.d.	50	0.8	0.343
	216	218	AR032578	b.d.	b.d.	50	2.5	0.272
AANR0002	0.10	220	AR032579	0.004	0.1	40	0.7	0.369
AANR0002 AANR0002	218		AD000500					
AANR0002 AANR0002 AANR0002	220	222	AR032580	0.01	b.d.	50 50		0.282
AANR0002 AANR0002 AANR0002 AANR0002	220 222	222 224	AR032581	0.028	b.d.	50	0.9	0.28
AANR0002 AANR0002 AANR0002	220 222 224	222 224 226	AR032581 AR032582	0.028	b.d. b.d.	50 60	0.9 0.9	0.28 0.318
AANR0002 AANR0002 AANR0002 AANR0002 AANR0002	220 222	222 224	AR032581	0.028	b.d.	50	0.9	0.28
AANR0002 AANR0002 AANR0002 AANR0002 AANR0002 AANR0002	220 222 224 226	222 224 226 228	AR032581 AR032582 AR032583	0.028 0.016 0.626	b.d. b.d. 0.3	50 60 490	0.9 0.9 0.8	0.28 0.318 0.514

Hole	From (m)	To (m)	Sample number	Au (g/t)	Ag (g/t)	As (ppm)	Sb (ppm)	S (%)
AANR0003	20	22	AR032588	0.016	(g/t) b.d.	30	0.8	0.188
AANR0003	22	24	AR032589	0.006	b.d.	20	0.7	0.311
AANR0003	24	26	AR032590	0.008	b.d.	20	0.7	1.07
AANR0003	26	28	AR032591	0.004	b.d.	20	0.7	0.565
AANR0003	28	30	AR032592	0.016	b.d.	30	0.7	1.07
AANR0003	30	32	AR032593	0.004	b.d.	50	8.8	0.576
AANR0003	32	34	AR032594	0.004	b.d.	50	8.2	0.538
AANR0003	34	36	AR032596	0.004	b.d.	40	7.4	0.669
AANR0003	36	38	AR032597	0.004	b.d.	30	4.2	1.16
AANR0003	38	40	AR032598	0.006	b.d.	20	0.9	0.196
AANR0003	40	42	AR032599	0.008	b.d.	30	1	0.093
AANR0003	42	44	AR032600	0.006	b.d.	10	0.9	0.052
AANR0003	44	46	AR032601	0.008	b.d.	10	0.8	0.037
AANR0003	46	48	AR032602	0.006	b.d.	10	0.8	0.039
AANR0003	48	50	AR032603	0.006	b.d.	10	1.1	0.038
AANR0003	50	52	AR032604	0.008	b.d.	30	0.9	0.046
AANR0003	52	54	AR032606	0.004	b.d.	20	1	0.025
AANR0003	54	56	AR032607	0.006	b.d.	20	0.8	0.025
AANR0003	56	58	AR032608	0.028	b.d.	20	1	0.029
AANR0003	58	60	AR032609	0.006	b.d.	10	1	0.027
AANR0003	60	62	AR032610	0.006	b.d.	10	1.1	0.032
AANR0003	62	64	AR032611	0.004	b.d.	10	0.8	0.032
AANR0003	64	66	AR032612	0.01	0.2	10	0.9	0.037
AANR0003	66	68	AR032613	0.008	0.1	20	1.9	0.042
AANR0003	68	70	AR032614	0.012	b.d.	20	2.2	0.052
AANR0003	70	72	AR032616	0.006	b.d.	10	4.1	0.053
AANR0003	72	74	AR032617	0.006	b.d.	10	10.5	0.05
AANR0003	74	76	AR032618	0.008	b.d.	10	5.4	0.045
AANR0003	76	78	AR032619	0.01	b.d.	10	2	0.041
AANR0003	78	80	AR032620	0.006	b.d.	10	1.5	0.049
AANR0003	80	82	AR032621	0.03	b.d.	b.d.	2.4	0.03
AANR0003	82	84	AR032622	0.016	b.d.	10	5.8	0.052
AANR0003	84	86	AR032623	0.008	b.d.	10	2.6	0.034
AANR0003	86	88	AR032624	0.012	0.1	10	1.6	0.053
AANR0003	88	90	AR032626	0.008	0.1	10	1.2	0.035
AANR0003	90	92	AR032627	0.008	0.1	10	5.7	0.035
AANR0003	92	94	AR032628	0.008	0.1	10	5.7	0.029
AANR0003	94	96	AR032629	0.008	b.d.	b.d.	1.3	0.028
AANR0003	96	98	AR032630	0.008	b.d.	10	1.4	0.027
AANR0003	98	100	AR032631	0.012	b.d.	20	1.2	0.026
AANR0003	100	102	AR032632	0.01	b.d.	10	0.8	0.036
AANR0003	102	104	AR032633	0.008	0.3	10	1.2	0.069
AANR0003	104	106	AR032634	0.01	0.3	10	3.9	0.113
AANR0003	106	108	AR032636	0.014	0.3	20	5.4	0.705
AANR0003	108	110	AR032637	0.01	0.2	10	2.6	0.685
AANR0003	110	112	AR032638	0.01	0.2	10	8.7	0.852
AANR0003	112	114	AR032639	0.01	0.3	20	7.8	1.32
AANR0003	114	116	AR032640	0.012	0.2	30	2.3	1.18
AANR0003	116	118	AR032641	0.008	b.d.	10	0.8	0.457
AANR0003	118	120	AR032642	0.008	b.d.	10	0.9	0.584
AANR0003	120	122	AR032643	0.008	0.2	10	1.1	1.37
AANR0003	122	124	AR032644	0.008	b.d.	10	0.8	0.762
AANR0003	124	126	AR032646	0.008	0.1	10	1.1	0.595
AANR0003	126	128	AR032647	0.008	b.d.	30	1	0.565
AANR0003	128	130	AR032648	0.014	b.d.	80	0.7	0.379
AANR0003	130	132	AR032649	0.012	0.3	50	1.3	3.46
AANR0003	132	134	AR032650	0.014	0.5	20	6.1	3.15
AANR0003	134	136	AR032651	0.016	0.5	10	7.8	3.01
AANR0003	136	138	AR032652	0.014	0.7	50	8.1	4.2
AANR0003	138	140	AR032653	0.016	0.4	40	4.1	2.91
AANR0003	140	142	AR032654	0.024	0.4	50	3.4	3.23
AANR0003	142	144	AR032656	0.012	0.4	40	3.4	2.75
AANR0003	144	146	AR032657	0.018	0.5	40	3.8	3.15
AANR0003	146	148	AR032658	0.014	0.2	10	5.1	1.13
AANR0003	148	150	AR032659	0.01	0.1	10	3.8	0.755
AANR0003	150	152	AR032660	0.008	0.1	10	1.1	0.995
AANR0003	152	154	AR032661	0.01	0.2	10	1.1	1.44
AANR0003	154	156	AR032662	0.014	0.2	20	1.3	0.876
AANR0003	156	158	AR032663	0.01	1.5	10	1.6	0.964
AANR0003	158	160	AR032664	0.01	0.2	20	0.7	1.38
AANR0003	160	162	AR032666	0.01	b.d.	40	0.8	0.775
AANR0003	162	164	AR032667	0.01	0.1	10	1.2	1.17
AANR0003	164	166	AR032668	0.018	0.3	40	2.5	2.85
AANR0003	166	168	AR032669	0.016	0.3	60	2.8	3.51
AANR0003	168	170	AR032670	0.016	0.3	60	6.3	2.73
AANR0003	170	172	AR032671	0.018	0.5	60	8.6	5.22
AANR0003	172	174	AR032672	0.012	0.4	30	4.2	3.21
AANR0003	174	176	AR032673	0.012	0.3	30	1.9	2.83
AANR0003	176	178	AR032674	0.008	0.2	10	0.9	1.92
AANR0003	178	180	AR032676	0.002	0.3	10	1.1	3.04
AANR0003	180	182	AR032677	0.006	0.2	b.d.	0.9	2.06
AANR0003	182	184	AR032678	0.006	0.2	b.d.	0.7	2.05
AANR0003	184	186	AR032679	0.002	0.2	10	3.7	1.56
AANR0003	186	188	AR032680	0.002	0.1	b.d.	0.7	1.34
AANR0003	188	190	AR032681	0.002	0.3	10	1.1	2.77
AANR0003	190	192	AR032682	0.000	b.d.	10	0.7	0.482
AANR0003	192	194	AR032683	0.004	b.d.	10	3.7	0.753
AANR0003	192	196	AR032684	0.004	b.d.	b.d.	0.8	0.27
AANR0003	194	198	AR032686	0.010	b.d.	b.d.	3.3	0.27
AANR0003	198	200	AR032687	0.012	b.d.	b.d.	1	0.331
	200	200	AR032688	0.004	b.d.	b.d.	3.2	0.24
AANR0003				5.001				
AANR0003 AANR0003	202	204	AR032689	0.004	b.d.	b.d.	0.8	0.185

Hole	From	To	Sample	Au	Ag	As	Sb	S
AANR0003	(m) 206	(m) 208	number AR032691	(<u>g/t)</u> 0.006	(<u>g/t)</u> b.d.	(ppm) 40	(ppm) 0.8	(%) 0.279
AANR0003 AANR0003	206	208	AR032691 AR032692	0.006	b.d. b.d.	30	0.8	0.279
AANR0003	210	210	AR032693	0.004	b.d.	b.d.	1	0.271
AANR0003	212	214	AR032694	0.006	0.1	10	1.7	0.418
AANR0003	214	216	AR032696	0.008	0.1	b.d.	0.8	0.405
AANR0003 AANR0003	216 218	218 220	AR032697 AR032698	0.006	b.d. 0.3	b.d. 10	2	0.312 0.49
AANR0003	210	220	AR032699	0.008	0.3 b.d.	b.d.	1.2	0.49
AANR0003	222	224	AR032700	0.03	0.1	10	1.2	0.359
AANR0003	224	226	AR032701	0.008	0.2	10	1	0.289
AANR0003	226	228	AR032702	0.008	b.d.	10	3.5	0.332
AANR0003	228	230	AR032703	0.008	0.1	b.d.	1.8	0.526
AANR0003 AANR0003	230 232	232 234	AR032704 AR032706	0.006	0.2	10 10	0.7	0.873
AANR0003	232	236	AR032700	0.002	0.1	10	0.8	0.873
AANR0003	236	238	AR032708	0.006	0.2	10	0.7	1.07
AANR0003	238	240	AR032709	0.01	0.2	10	0.6	1.4
AANR0003	240	242	AR032710	0.004	0.2	40	0.9	1.47
AANR0003 AANR0003	242 244	244 246	AR032711 AR032712	0.008	0.4	330 50	1.8 1.5	3.65 4.61
AANR0003	244	240	AR032712 AR032713	0.016	0.3	90	1.5	2.98
AANR0003	248	250	AR032714	0.012	0.5	410	1.6	4.1
AANR0003	250	252	AR032716	0.006	0.4	20	1.5	3.17
AANR0003	252	254	AR032717	0.008	0.3	190	6.1	3.27
AANR0003	254	256	AR032718	0.01	0.5	200	1.8	4.35
AANR0003	256	258	AR032719	0.01	0.3	20	1.1	3.46
AANR0003 AANR0003	258 260	260 262	AR032720 AR032721	0.004	0.2	10 10	0.8	1.11 0.302
AANR0003	262	264	AR032722	0.004	0.2	10	1	0.252
AANR0004	40	42	AR032723	0.068				
AANR0004	42	44	AR032724	0.092				
AANR0004	44	46	AR032726	0.048				
AANR0004 AANR0004	46	48 50	AR032727 AR032728	0.07				
AANR0004	50	52	AR032729	0.702				
AANR0004	52	54	AR032730	b.d.				
AANR0004	54	56	AR032731	0.202				
AANR0004	56	58	AR032732	b.d.				
AANR0004	58	60	AR032733	0.006				
AANR0004 AANR0004	60 62	62 64	AR032734 AR032736	0.02				
AANR0004	64	66	AR032730	0.006				
AANR0004	66	68	AR032738	b.d.				
AANR0004	68	70	AR032739	b.d.				
AANR0004	70	72	AR032740	0.004				
AANR0004 AANR0004	72	74 76	AR032741 AR032742	0.046				
AANR0004 AANR0004	74	78	AR032742 AR032743	b.d.				
AANR0004	78	80	AR032744	b.d.				
AANR0004	80	82	AR032746	0.002				
AANR0004	82	84	AR032747	b.d.				
AANR0004	84	86	AR032748	0.004				
AANR0004 AANR0004	86 88	88 90	AR032749 AR032750	b.d. b.d.				
AANR0004	90	92	AR032751	0.012				
AANR0004	92	94	AR032752	0.244				
AANR0004	94	96	AR032753	b.d.				
AANR0004	96	98	AR032754	b.d.				
AANR0004	98 100	100 102	AR032756	0.064				
AANR0004 AANR0004	100	102	AR032757 AR032758	0.056 0.074				
AANR0004 AANR0004	102	104	AR032759	0.074				
AANR0004	106	108	AR032760	0.006				
AANR0004	108	110	AR032761	0.018				
AANR0004	110	112	AR032762	0.038				
AANR0004 AANR0004	112 114	114 116	AR032763 AR032764	0.054				
AANR0004 AANR0004	114	118	AR032764 AR032766	0.000				
AANR0004	118	120	AR032767	0.01				
AANR0004	120	122	AR032768	0.06				
AANR0004	122	124	AR032769	0.074				
AANR0004	124	126	AR032770	0.07				
AANR0004 AANR0004	126 128	128 130	AR032771 AR032772	0.044				
AANR0004 AANR0004	120	130	AR032772 AR032773	0.02				
AANR0004	132	134	AR032774	0.02				
AANR0004	134	136	AR032776	0.034				
AANR0004	136	138	AR032777	0.042				
AANR0004	138	140	AR032778	0.032				
AANR0004 AANR0004	140 142	142 144	AR032779 AR032780	0.044 0.064				
AANR0004	142	144	AR032780	0.004				
AANR0004	146	148	AR032782	0.022				
AANR0004	148	150	AR032783	0.048				
AANR0004	150	152	AR032784	0.38				
AANR0004	152	154	AR032786	0.466				
AANR0004 AANR0004	154 156	156 158	AR032787 AR032788	0.12 0.084				
AANR0004 AANR0004	150	160	AR032789	0.064				
AANR0004	160	162	AR032790	0.426				
AANR0004	162	164	AR032791	2.39				
AANR0004	164	166	AR032792	0.454				
AANR0004	166	168	AR032793	0.09				

Hole	From (m)	To (m)	Sample number	Au (g/t)	Ag (g/t)	As (ppm)	Sb (ppm)	S (%)
AANR0004	168	170	AR032794	0.258				
AANR0004	170	172	AR032796	0.762				
AANR0004	172	174	AR032797	0.176				
AANR0004	174	176	AR032798	0.12				
AANR0004	176	178	AR032799	0.036				
AANR0004	178	180	AR032800	0.046				
AANR0004	180	182	AR032801	0.388				
AANR0004	182	184	AR032802	0.264				
AANR0004	184	186	AR032803	0.022				
AANR0004 AANR0004	186 188	188 190	AR032804 AR032806	0.092				
AANR0004	190	192	AR032807	0.040				
AANR0004	190	192	AR032808	0.156				
AANR0004	192	196	AR032809	0.252				
AANR0004	196	198	AR032810	0.004				
AANR0004	198	200	AR032811	0.012				
AANR0004	200	202	AR032812	b.d.				
AANR0004	202	204	AR032813	0.012				
AANR0004	204	206	AR032814	0.01				
AANR0004	206	208	AR032816	b.d.				
AANR0004	208	210	AR032817	b.d.				
AANR0004	210	212	AR032818	0.008				
AANR0004	212	214	AR032819	0.026				
AANR0004	214	216	AR032820	0.002				
AANR0004	216	218	AR032821	b.d.				
AANR0004	218	220	AR032822	b.d.				
AANR0004	220	222	AR032823	0.002				
AANR0004	222	224	AR032824	b.d.				
AANR0004 AANR0004	224	226	AR032826	0.018				
	226	228 230	AR032827	b.d. 0.01	-			
AANR0004 AANR0004	228	230	AR032828 AR032829	b.d.				
AANR0004 AANR0004	230	232	AR032829 AR032830	0.04				
AANR0004	232	234	AR032831	b.d.				
AANR0004	236	238	AR032832	b.d.				
AANR0004	238	240	AR032833	b.d.				
AANR0004	240	242	AR032834	b.d.				
AANR0004	242	244	AR032836	0.01				
AANR0004	244	246	AR032837	b.d.				
AANR0004	246	248	AR032838	b.d.				
AANR0004	248	250	AR032839	b.d.				
AANR0004	250	252	AR032840	b.d.				
AANR0004	252	254	AR032841	b.d.				
AANR0004	254	256	AR032842	b.d.				
AANR0004	256	258	AR032843	b.d.				
AANR0005	34	36	AR032844	b.d.				
AANR0005	36	38	AR032846	0.008				
AANR0005	38	40	AR032847	b.d.				
AANR0005	40	42	AR032848	b.d.	-			
AANR0005 AANR0005	42	44	AR032849 AR032850	b.d. b.d.				
AANR0005 AANR0005	44	46	AR032850 AR032851	0.074	-			
AANR0005	40	50	AR032852	0.014				
AANR0005	50	52	AR032853	0.014				
AANR0005	52	54	AR032854	0.168				
AANR0005	54	56	AR032856	0.08				
AANR0005	56	58	AR032857	0.12				
AANR0005	58	60	AR032858	0.042				
AANR0005	60	62	AR032859	0.142				
AANR0005	62	64	AR032860	0.018				
AANR0005	64	66	AR032861	0.098				
AANR0005	66	68	AR032862	0.096				
AANR0005	68	70	AR032863	b.d.				
AANR0005	70	72	AR032864	0.01	-			
AANR0005	72	74	AR032866	0.006				
AANR0005	74	76	AR032867	0.016				
AANR0005	76	78	AR032868	0.026				
AANR0005	78	80	AR032869	0.074				
AANR0005	80	82	AR032870	b.d.				
AANR0005	82	84	AR032871	0.002				
AANR0005 AANR0005	84 86	86 88	AR032872	b.d.				
AANR0005 AANR0005	88	90	AR032873 AR032874	0.002 b.d.				
AANR0005	90	90	AR032674 AR032876	b.d.	-			
AANR0005	90	92 94	AR032676 AR032877	b.d.				
AANR0005	94	96	AR032878	0.002				
AANR0005	96	98	AR032879	0.588				
AANR0005	98	100	AR032880	0.96				
AANR0005	100	102	AR032881	0.156				
AANR0005	100	104	AR032882	0.392				
AANR0005	102	106	AR032883	0.18				
AANR0005	106	108	AR032884	0.072				
AANR0005	100	110	AR032886	0.026	1			
AANR0005	110	112	AR032887	0.020				
AANR0005	112	114	AR032888	0.014	1			
AANR0005	114	116	AR032889	0.014				
AANR0005	116	118	AR032890	0.01				
AANR0005	118	120	AR032891	0.004				
AANR0005	120	122	AR032892	0.018				
AANR0005	122	124	AR032893	0.008				
AANR0005	124	126	AR032894	0.02				
	400							
AANR0005	126	128	AR032896	0.018				

	From	То	Sample	Au	Ag	As	Sb	S
Hole	(m)	(m)	number	(g/t)	(g/t)	(ppm)	(ppm)	(%)
AANR0005	130	132	AR032898	0.022				
AANR0005 AANR0005	132 134	134 136	AR032899 AR032900	0.016				
AANR0005	136	138	AR032901	0.03				
AANR0005	138	140	AR032902	0.016				
AANR0005	140	142	AR032903	0.014				
AANR0005 AANR0005	142 144	144 146	AR032904 AR032906	0.01 0.024				
AANR0005	144	140	AR032900	0.024				
AANR0005	148	150	AR032908	0.01				
AANR0005	150	152	AR032909	0.01				
AANR0005 AANR0005	152 154	154 156	AR032910 AR032911	0.01				
AANR0005	154	158	AR032911 AR032912	0.006				
AANR0005	158	160	AR032913	0.006				
AANR0005	160	162	AR032914	0.016				
AANR0005	162	164	AR032916	0.018				
AANR0005 AANR0005	164 166	166 168	AR032917 AR032918	0.032				
AANR0005	168	170	AR032919	0.008				
AANR0005	170	172	AR032920	0.01				
AANR0005	172	174	AR032921	0.014				
AANR0005 AANR0005	174 176	176 178	AR032922 AR032923	0.02				
AANR0005	178	180	AR032923	0.014				
AANR0005	180	182	AR032926	0.21				
AANR0005	182	184	AR032927	0.028				
AANR0005	184	186	AR032928	0.018				
AANR0005	186	188	AR032929	0.016				
AANR0005 AANR0005	188 190	190 192	AR032930 AR032931	0.016				
AANR0005	192	194	AR032932	0.02				
AANR0005	194	196	AR032933	0.016				
AANR0005	196	198	AR032934	0.492				
AANR0005	198	200	AR032936	0.01				
AANR0005 AANR0005	200 202	202 204	AR032937 AR032938	0.01				
AANR0005	202	204	AR032939	0.000				
AANR0005	206	208	AR032940	0.01				
AANR0005	208	210	AR032941	0.008				
AANR0005	210	212	AR032942	0.016				
AANR0005 AANR0005	212 214	214 216	AR032943 AR032944	0.01				
AANR0005	214	210	AR032946	0.000				
AANR0005	218	220	AR032947	0.014				
AANR0005	220	222	AR032948	0.01				
AANR0005	222	224	AR032949	0.006				
AANR0005 AANR0005	224 226	226 228	AR032950 AR032951	0.006				
AANR0005	220	230	AR032952	0.008				
AANR0005	230	232	AR032953	0.01				
AANR0005	232	234	AR032954	0.02				
AANR0005	234	236	AR032956	0.084				
AANR0005 AANR0005	236 238	238 240	AR032957 AR032958	0.028				
AANR0005	240	242	AR032959	0.014				
AANR0005	242	244	AR032960	0.008				
AANR0005	244	246	AR032961	0.038				
AANR0005	246	248	AR032962	0.02				
AANR0005 AANR0005	248 250	250 252	AR032963 AR032964	0.01 0.046				
AANR0005	252	254	AR032966	0.332				
AANR0005	254	256	AR032967	0.078				
AANR0005	256	258	AR032968	0.184				
AANR0005	258	260	AR032969	0.04				
AANR0005 AANR0005	260 262	262 264	AR032970 AR032971	0.014 0.018				
AANR0006	34	36	AR032972	0.016				
AANR0006	36	38	AR032973	0.008				
AANR0006	38	40	AR032974	0.002				
AANR0006 AANR0006	40 42	42	AR032976 AR032977	0.014				
AANR0006	42	44	AR032977 AR032978	0.001				
AANR0006	46	48	AR032979	b.d.				
AANR0006	48	50	AR032980	b.d.				
AANR0006	50	52	AR032981	b.d.				
AANR0006 AANR0006	52 54	54 56	AR032982 AR032983	b.d. b.d.				
AANR0006	56	58	AR032983	b.d. b.d.				
AANR0006	58	60	AR032986	0.008				
AANR0006	60	62	AR032987	b.d.				
AANR0006	62	64	AR032988	b.d.				
AANR0006 AANR0006	64	66 68	AR032989	b.d. b.d.				
AANR0006	66 68	70	AR032990 AR032991	b.d. b.d.				
AANR0006	70	72	AR032992	b.d.				
AANR0006	72	74	AR032993	b.d.				
AANR0006	74	76	AR032994	0.002				
AANR0006	76	78	AR032996	b.d.				
AANR0006 AANR0006	78 80	80 82	AR032997 AR032998	0.124 0.03				
AANR0006	82	84	AR032999	0.03				
AANR0006	84	86	AR033000	b.d.				

Hole	From (m)	To (m)	Sample number	Au (g/t)	Ag (g/t)	As (ppm)	Sb (ppm)	S (%)
AANR0006	86	88	AR033001	b.d.				
AANR0006	88	90	AR033002	b.d.				
AANR0006 AANR0006	90 92	92 94	AR033003 AR033004	b.d. b.d.				
AANR0006	94	96	AR033005	b.d.				
AANR0006	96	98	AR033006	b.d.				
AANR0006	98	100	AR033008	b.d.				
AANR0006	100	102	AR033009	b.d.				
AANR0006	102	104	AR033010	b.d.				
AANR0006	104	106	AR033011	b.d.				
AANR0006 AANR0006	106	108 110	AR033012 AR033013	b.d. b.d.				
AANR0006	110	112	AR033013	b.d.				
AANR0006	112	114	AR033015	0.002				
AANR0006	114	116	AR033016	b.d.				
AANR0006	116	118	AR033018	b.d.				
AANR0006	118	120	AR033019	b.d.				
AANR0006	120	122	AR033020	b.d.				
AANR0006 AANR0006	122	124 126	AR033021 AR033022	b.d. b.d.				
AANR0006	124	120	AR033022 AR033023	b.d.				
AANR0006	128	130	AR033024	b.d.				
AANR0006	130	132	AR033025	b.d.				
AANR0006	132	134	AR033026	0.022				
AANR0006	134	136	AR033028	0.01				
AANR0006	136	138	AR033029	0.026				
AANR0006	138	140	AR033030	0.002				
AANR0006	140	142	AR033031	1.07				
AANR0006	142	144	AR033032	0.958				
AANR0006 AANR0006	144 146	146 148	AR033033 AR033034	0.194				
AANR0006	148	150	AR033035	0.386				
AANR0006	150	152	AR033036	0.176				
AANR0006	152	154	AR033038	0.028				
AANR0006	154	156	AR033039	0.002				
AANR0006	156	158	AR033040	0.006				
AANR0006	158	160	AR033041	0.046				
AANR0006	160	162	AR033042	0.128				
AANR0006 AANR0006	162	164 166	AR033043 AR033044	0.032				
AANR0006	164	168	AR033044 AR033045	0.000				
AANR0006	168	170	AR033046	0.002				
AANR0006	170	172	AR033048	0.006				
AANR0006	172	174	AR033049	0.004				
AANR0006	174	176	AR033050	0.004				
AANR0006	176	178	AR033051	0.004				
AANR0006	178	180	AR033052	b.d.				
AANR0006 AANR0006	180	182 184	AR033053	b.d.				
AANR0006	184	186	AR033054 AR033055	0.004				
AANR0006	186	188	AR033056	0.004				
AANR0006	188	190	AR033058	b.d.				
AANR0006	190	192	AR033059	b.d.				
AANR0006	192	194	AR033060	0.002				
AANR0006	194	196	AR033061	b.d.				
AANR0006	196	198	AR033062	0.008				
AANR0006 AANR0006	198 200	200 202	AR033063 AR033064	0.002				
AANR0006	200	202	AR033065	0.002				
AANR0006	204	206	AR033066	0.002				
AANR0006	206	208	AR033068	0.314				
AANR0006	208	210	AR033069	0.018				
AANR0006	210	212	AR033070	0.014				
AANR0006	212	214	AR033071	0.002				
AANR0006	214	216	AR033072	0.006				
AANR0006 AANR0006	216 218	218 220	AR033073 AR033074	0.004			$\left \right $	
AANR0006	210	220	AR033074 AR033075	0.002				
AANR0006	222	224	AR033076	0.002				
AANR0006	224	226	AR033078	0.004				
AANR0006	226	228	AR033079	0.108				
AANR0006	228	230	AR033080	0.168				
AANR0006	230	232	AR033081	0.1				
AANR0006	232	234	AR033082	0.026			$\left \right $	
AANR0006 AANR0006	234 236	236 238	AR033083 AR033084	0.03				
AANR0006	230	230	AR033085	1.07				
AANR0006	240	242	AR033086	0.346				
AANR0006	242	244	AR033088	0.192				
AANR0006	244	246	AR033089	b.d.				
AANR0006	246	248	AR033090	0.024				
AANR0006	248	250	AR033091	0.02	-			
AANR0006	250	252	AR033092	0.02				
AANR0007	30	32	AR033093	0.006				
AANR0007 AANR0007	32	34	AR033094	0.016	-		$\left \right $	
AANR0007 AANR0007	34	36 38	AR033095 AR033096	0.004				
AANR0007 AANR0007	38	40	AR033098	0.002				
	40	42	AR033099	0.004				
AANR0007								
AANR0007 AANR0007	42	44	AR033100	0.002				
	42 44	44 46	AR033100 AR033101	0.002				

Hole	From (m)	To (m)	Sample number	Au (g/t)	Ag (g/t)	As (ppm)	Sb (ppm)	S (%)
AANR0007	50	52	AR033104	0.002				
AANR0007	52	54	AR033105	0.002				
AANR0007	54	56	AR033106	0.002				
AANR0007	56	58	AR033108	0.002		1		
AANR0007	58	60	AR033109	0.002				
AANR0007	60	62	AR033110	0.002				
AANR0007	62	64	AR033111	0.006				
AANR0007	64	66	AR033112	0.000				
AANR0007	66	68	AR033112	0.004				
AANR0007	68	70	AR033114	0.000				
		70						
AANR0007	70		AR033115	0.376				
AANR0007	72	74	AR033116	0.384				
AANR0007	74	76	AR033118	0.034				
AANR0007	76	78	AR033119	0.866				
AANR0007	78	80	AR033120	0.136				
AANR0007	80	82	AR033121	0.444				
AANR0007	82	84	AR033122	0.168				
AANR0007	84	86	AR033123	0.04				
AANR0007	86	88	AR033124	0.032				
AANR0007	88	90	AR033125	0.024		1		
AANR0007	90	92	AR033126	0.034				
AANR0007	92	94	AR033128	0.026				
AANR0007	94	96	AR033129	0.188				
AANR0007	96	98	AR033130	0.272				
AANR0007	98	100	AR033131	0.074				
AANR0007	100	102	AR033132	0.012				
AANR0007	102	104	AR033133	0.114				
AANR0007	104	106	AR033134	0.058				
AANR0007	106	108	AR033135	0.018				
AANR0007	108	110	AR033136	0.044				
AANR0007	110	112	AR033138	0.036				
AANR0007	112	114	AR033139	0.004				
AANR0007	112	116	AR033140	0.004		i		
AANR0007	114	118	AR033141	0.004				
	_							
AANR0007	118	120	AR033142	0.004				
AANR0007	120	122	AR033143	0.046				
AANR0007	122	124	AR033144	0.02				
AANR0007	124	126	AR033145	0.204				
AANR0007	126	128	AR033146	0.104				
AANR0007	128	130	AR033148	0.194				
AANR0007	130	132	AR033149	0.27				
AANR0007	132	134	AR033150	0.022				
AANR0007	134	136	AR033151	0.014				
AANR0007	136	138	AR033152	0.014				
AANR0007	130	140	AR033153	0.308				
AANR0007	140	142	AR033154	2.4				
AANR0007	142	144	AR033155	0.182				
AANR0007	144	146	AR033156	0.026				
AANR0007	146	148	AR033158	0.012				
AANR0007	148	150	AR033159	0.01				
AANR0007	150	152	AR033160	0.004				
AANR0007	152	154	AR033161	0.008		1		
AANR0007	154	156	AR033162	0.004				
AANR0007	156	158	AR033164	b.d.				
AANR0007	158	160	AR033165	0.004				
AANR0007	160	162	AR033166	0.004				
AANR0007	162	164	AR033168	0.002				
AANR0007	164	166	AR033169	0.004				
AANR0007	166	168	AR033170	0.002				
AANR0007	168	170	AR033171	0.002				
AANR0007	170	172	AR033172	b.d.				
AANR0007	172	174	AR033173	b.d.				
AANR0007	174	176	AR033174	b.d.				
AANR0007	176	178	AR033175	b.d.				
AANR0007	178	180	AR033176	b.d.				
AANR0007	180	182	AR033178	b.d.	<u> </u>		1	
AANR0007	182	184	AR033179	b.d.				
AANR0007 AANR0007	184	186	AR033179 AR033180	b.d. b.d.				
AANR0007	186	188	AR033181	b.d.				
AANR0007	188	190	AR033182	b.d.				
AANR0007	190	192	AR033183	b.d.				
AANR0007	192	194	AR033184	b.d.				
AANR0007	194	196	AR033185	b.d.				
AANR0007	196	198	AR033186	b.d.				
AANR0007	198	200	AR033188	b.d.				
AANR0007	200	202	AR033189	b.d.				
AANR0007	202	204	AR033190	b.d.				
AANR0007	202	206	AR033191	b.d.			1	
AANR0007	204	200	AR033192	b.d.				
AANR0007	208	210	AR033193	b.d.				
AANR0007	210	212	AR033194	b.d.				
AANR0007	212	214	AR033195	b.d.				
AANR0007	214	216	AR033196	b.d.				
AANR0007	216	218	AR033198	b.d.				
AANR0007	218	220	AR033199	b.d.				
AANR0007	220	222	AR033200	b.d.	-		1	
AANR0007 AANR0007	220							
		224	AR033201	b.d.				
AANR0007	224	226	AR033202	b.d.				
AANR0007	226	228	AR033203	b.d.				
A A NID0007	228	230	AR033204	b.d.				
AANR0007		020	10000005	hd				
AANR0007 AANR0007	230	232	AR033205	b.d.				
	230 232	232	AR033205 AR033206	b.d.				

Hole	From (m)	To (m)	Sample number	Au (g/t)	Ag (g/t)	As (ppm)	Sb (ppm)	S (%)
AANR0007	236	238	AR033209	b.d.				
AANR0007	238	240	AR033210	b.d.				

Appendix 3 – Assay results, Taurus and Great Ophir gold mines, Bulong-Taurus area

All assays from recent rock chipping and mapping program within the Bulong Taurus area, specifically in the vicinity of the Taurus and Great Ophir gold mines. Gold grades of 1 g/t Au or greater are highlighted.

- 54 samples collected during mapping program
- 22 samples (40%) 1 g/t Au or greater
- Average grade for all samples collected in this program: 4.86 g/t Au.

Abbreviations used: Au – gold, Ag – silver, As – arsenic, Sb – antimony, S – sulphur, m – metre, g/t – grams per tonne, ppm – parts per million, b.d. – below detection.

Tenement	Easting	Northing	Sample	Au	Ag	As	Sb	S
			number	(g/t)	(g/t)	(ppm)	(ppm)	(%)
M25/00151	390328	6603642	S301804	0.01	b.d.	b.d.	0.8	0.00
M25/00151	390407	6603642	S301805	52.40	0.40	b.d.	0.3	0.00
M25/00151	390413	6603649	S301806	0.06	b.d.	b.d.	0.3	0.00
M25/00151	390424	6603661	S301807	2.12	b.d.	10	0.3	0.00
M25/00151	390425	6603662	S301808	0.09	b.d.	b.d.	0.7	0.00
M25/00151	390434	6603670	S301809	2.21	b.d.	b.d.	0.3	0.00
M25/00151	390391	6603691	S301811	0.16	b.d.	b.d.	0.4	0.00
M25/00151	390864	6603601	S301813	0.00	b.d.	b.d.	0.4	0.00
M25/00151	390847	6603595	S301814	0.07	b.d.	b.d.	0.3	0.00
M25/00151	390775	6603598	S301815	0.24	b.d.	b.d.	0.4	0.00
M25/00151	390759	6603595	S301816	0.84	b.d.	b.d.	0.2	0.00
M25/00151	390753	6603577	S301817	3.74	0.50	b.d.	0.2	0.00
M25/00151	390739	6603592	S301818	0.15	b.d.	b.d.	0.4	0.00
M25/00151	390718	6603591	S301819	0.22	b.d.	10	0.4	0.00
M25/00151	390695	6603595	S301821	2.09	b.d.	10	0.4	0.00
M25/00151	390694	6603573	S301822	0.08	b.d.	10	0.3	0.00
M25/00151	390665	6603573	S301823	5.05	b.d.	b.d.	0.5	0.00
M25/00151	390664	6603581	S301824	3.38	0.10	30	0.3	0.00
M25/00151	390667	6603593	S301825	1.11	b.d.	b.d.	0.4	0.00
M25/00151	390652	6603576	S301825	2.35	b.d.	50	0.4	0.00
M25/00151 M25/00151	390643	6603569	S301820	0.71	b.d.	20	0.5	0.04
M25/00151	390647	6603612	S301828	0.06	b.d.	180	0.7	0.00
M25/00151	390636	6603602	S301829	0.03	b.d.	20	0.6	0.02
M25/00151	390524	6603625	S301831	0.73	b.d.	b.d.	0.3	0.00
M25/00151	390522	6603644	S301832	1.70	b.d.	10	0.4	0.00
M25/00151	390514	6603656	S301833	3.35	b.d.	30	0.3	0.01
M25/00151	390501	6603625	S301834	118.00	3.20	b.d.	0.2	0.01
M25/00151	390509	6603650	S301835	2.25	b.d.	120	0.9	0.03
M25/00151	390509	6603651	S301836	0.16	b.d.	60	0.8	0.01
M25/00151	390505	6603648	S301837	1.09	b.d.	30	0.5	0.01
M25/00151	390505	6603649	S301838	19.50	0.20	90	1.2	0.02
M25/00151	390504	6603645	S301839	1.16	b.d.	80	0.8	0.01
M25/00151	390500	6603643	S301841	0.80	b.d.	30	0.7	0.01
M25/00151	390500	6603644	S301842	0.38	b.d.	10	0.4	0.01
M25/00151	390488	6603636	S301843	0.54	b.d.	20	0.8	0.03
M25/00151	390488	6603637	S301844	0.10	b.d.	b.d.	0.2	0.00
M25/00151	390488	6603638	S301845	0.17	0.10	40	0.9	0.01
M25/00151	390468	6603631	S301846	0.03	b.d.	40	1.0	0.02
M25/00151	390468	6603632	S301847	0.26	b.d.	20	0.7	0.01
M25/00151	390462	6603626	S301848	0.05	b.d.	20	0.7	0.02
M25/00151	390462	6603627	S301849	0.10	b.d.	b.d.	0.6	0.03
M25/00151	390440	6603619	S301851	1.07	b.d.	20	0.5	0.00
M25/00151	390425	6603616	S301852	1.00	b.d.	30	0.9	0.00
M25/00151	390426	6603615	S301853	2.64	b.d.	20	0.4	0.00
M25/00151	390736	6603445	S301853	0.03	0.50	100	1.2	0.01
M25/00151	390769	6603442	S301855	0.03	b.d.	b.d.	0.3	0.02
M25/00151	390790	6603438	S301856	0.02	b.d.	90	0.6	0.02
M25/00151	390853	6603436	S301857	0.01	b.d.	60	0.7	0.01
M25/00151	390942	6603430	S301858	0.01	b.d.	b.d.	1.2	0.00
M25/00151	391134	6603409	S301859	0.00	b.d.	b.d.	0.3	0.00
M25/00151	390441	6603675	S301860	0.00	b.d.	b.d.	0.2	0.00
M25/00151	390602	6603607	S301861	2.36	0.20	b.d.	0.4	0.01
M25/00151	390440	6603617	S301862	0.16	b.d.	30	0.6	0.00
M25/00151	390714	6603595	S301863	29.90	0.40	10	0.5	0.01
M25/00151	390503	6603646	S301864	2.30	0.10	30	0.9	0.02

Appendix 4 – Collated intercepts, Aphrodite North area, Goongarrie South

Parameters used to define gold intercepts for Aphrodite North drill program

Parameter	Gold		
Minimum cut-off	0.5 g/t	2.0 g/t	
Minimum intercept thickness	2 m	2 m	
Maximum internal waste thickness	2 m	2 m	

Gold intercepts are defined using a nominal 0.5 g/t Au cut-off on a minimum intercept of 2 m and a maximum internal waste of 2 m. Secondary intercepts (i.e. the *"including"* intercepts) are defined using a nominal 2.0 g/t cut-off and the same intercept and internal waste characteristics. Where appropriate, consideration is also given to geological controls, such as vein and alteration zone distributions, in the definition of intercepts.

Drillhole	Interval	Lode (prelim)	Gold intercept (0.5 g/t cutoff)	Gold intercept (2.0 g/t cutoff)
AANR0001	44-50 m	West 2	6 m at 3.60 g/t Au from 44 m	including 2 m at 9.99 g/t Au from 44 m
	114-116 m	West 1	2 m at 0.77 g/t Au from 114 m	
	150-152 m		2 m at 0.8 g/t Au from 150 m	
	172-178 m	Main	6 m at 6.45 g/t Au from 172 m	including 4 m at 9.42 g/t Au from 172 m
AANR0002	76-86 m	East 2	10 m at 1.52 g/t Au from 76 m	including 2 m at 2.88 g/t Au from 78 m
	144-152 m	East 1	8 m at 0.91 g/t Au from 144 m	
	226-228 m	Main East	2 m at 0.63 g/t Au from 226 m	
AANR0004	48-50 m		2 m at 0.7 g/t Au from 48 m	
	162-164 m		2 m at 2.39 g/t Au from 162 m	
	170-172 m		2 m at 0.76 g/t Au from 170 m	
AANR0005	96-100 m		4 m at 0.77 g/t Au from 96 m	
AANR0006	140-144 m		4 m at 1.01 g/t Au from 140 m	
	238-240m		2 m at 1.07 g/t Au from 238 m	
AANR0007	76-78m		2 m at 0.87 g/t Au from 76 m	
	140-142		2 m at 2.40 g/t Au from 140m	

Appendix 5 – JORC Code, 2012 Edition, Table 1 report

Section 1 Sampling Techniques and Data

This section refers to sampling for both programs mentioned in this release, namely the Aphrodite North area RC drill program, and the Bulong-Taurus area rock chipping and mapping program. All "Criteria" referring to drilling necessarily refer only to the Aphrodite North area program. Samples undergo the same suite of analyses regardless of source, though preparation necessarily varies with sample type. (Criteria in this section applies to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Aphrodite North area drill program sampling All holes were sampled on a 2 metre down hole interval basis, with exceptions being made for end of hole final-lengths. All sampling lengths were recorded in ARL's standard sampling record spreadsheets. Sample condition, sample recovery and sample size were recorded for all drill-core samples collected by ARL. Industry standard practice was used in the processing of samples for assay, with 2m intervals of RC chips collected in green plastic bags. Assay of samples utilised standard laboratory techniques with standard ICP-AES undertaken on 40 gram samples for Au, Pt and Pd, and lithium borate fused-bead XRF analysis used for the remaining multi-element suite. Other elements are determined by separate XRF and LA-ICP-MS analyses. Further details of lab processing techniques are found in Quality of assay data and laboratory tests below. Bulong-Taurus rock chipping Chip sampling at Taurus and Great Ophir gold mines was taken at right angles, on specific structures and features in outcrop, in cuttings, and in historic workings, with an aim to assist mapping to elucidate controls on mineralisation. Rock chip samples size generally between 1.5 and 3.0 kg. Assay of samples utilised standard laboratory techniques with standard ICP-AES undertaken on 40 gram samples for Au, Pt and Pd, and lithium borate fused-bead XRF analysis used for the remaining multi-element suite. Other elements are determined by separate XRF and LA-ICP-MS analyses. Further details of IAD standard in the assist mapping to elucidate controls on mineralisation.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 In this program, Ardea drilled the Aphrodite North area project with 7 reverse circulation (RC) drill holes. All holes were drilled at 60° to either 090° or 270° to define several scissor sections in order to restrict the possible orientations of structures in a previously undrilled target. RC drilling was performed with a face sampling hammer (bit diameter between 4½ and 5¼ inches) and samples were collected by either a cone (majority) or riffle splitter using 2 metre composites. Sample condition, sample recovery and sample size were recorded for all drill samples collected by ARL.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC chip sample recovery was recorded by visual estimation of the reject sample, expressed as a percentage recovery. Overall estimated recovery was high. RC Chip sample condition recorded using a three code system, D=Dry, M=Moist, W=Wet. A proportion of samples were moist or wet, with the majority of these being associated with soft kaolin-goethite clays, where water injection has been used to improve drill recovery. Measures taken to ensure maximum RC sample recoveries included maintaining a clean cyclone and drilling equipment, using water injection at times of reduced air circulation, as well as regular communication with the drillers and slowing drill advance rates when variable to poor ground conditions are encountered.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC logging was undertaken on 1 metre intervals. Visual geological logging was completed for all drilling both at the time of drilling (using standard Ardea logging codes), and later over relevant met-sample intervals with a metallurgical-logging perspective. Geochemistry from Ardea aircore drilling data was used together with logging data to validate logged geological horizons. Aircore results cannot be used in a resource estimation. Logging was performed at the time of drilling, and planned drill hole target lengths adjusted by the geologist during drilling. The geologist also oversaw all sampling and drilling practices. ARL employees supervised all drilling. A small selection of representative chips were collected for every 1 metre interval and stored in chip-trays for future reference. In total, 1,686 m were drilled during the program, with the chips generated during entire program logged in detail.

Ardea Resources Limited

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation Quality of assay data	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	 2 metre composite samples were recovered using a 15:1 rig mounted cone splitter or trailer mounted riffle splitter during drilling into a calico sample bag. Sample target weight was between 2 and 3kg. In the case of wet clay samples, grab samples taken from sample return pile, initially into a calico sample bag. Wet samples were stored separately from other samples in plastic bags and riffle split once dry. QAQC was employed. A standard, blank or duplicate sample was inserted into the sample stream every 10 samples on a rotating basis. Standards were quantified industry standards. Every 30th sample a duplicate sample was taken using the same sample sub sample technique as the original sub sample. Sample sizes are appropriate for the nature of mineralisation. All Ardea samples were submitted to Kalgoorlie Bureau Veritas (BV) laboratories and transported to BV Perth, where they were pulverised.
and laboratory tests	 whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The samples were sorted, wet weighed, dried then weighed again. Primary preparation has been by crushing and splitting the sample with a riffle splitter where necessary to obtain a sub-fraction which has then been pulverised in a vibrating pulveriser. All coarse residues have been retained. The samples have been cast using a 66:34 flux with 4% lithium nitrate added to form a glass bead. Al, As, Ba, Ca, Cl, Co, Cr, Cu, Fe, Ga, K, Mg, Mn, Na, Ni, P, Pb, S, Sc, Si, Sr, Ti, V, Zn, Zr have been determined by X-Ray Fluorescence (XRF) Spectrometry on oven dry (105'C) sample unless otherwise stated. A fused bead for Laser Ablation MS was created to define Ag_LA, Be_LA, Bi_LA, Cd_LA, Ce_LA, Co_LA, Cs_LA, Dy_LA, Er_LA, Eu_LA, Gd_LA, Ge_LA, Hf_LA, Ho_LA, In_LA, La_LA, Lu_LA, Mo_LA, Nb_LA, Nd_LA, Ni_LA, Pr_LA, Rb_LA, Re_LA, Sb_LA, Sc_LA, Se_LA, Sm_LA, Sn_LA, Ta_LA, Tb_LA, Te_LA, Th_LA, Th_LA, U_LA, V_LA, W_LA, Y_LA, Yb_LA, which have been determined by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LAICP-MS). The sample have been analysed by Firing a 40 g (approx) portion of the sample. Lower sample weights may be employed for samples with very high sulphide and metal contents. This is the classical fire assay process and will give total separation of Gold, Platinum and Palladium in the sample. Au1, Pd, Pt have been determined by Inductively Coupled Plasma (ICP) Optical Emission Spectrometry. Loss on Ignition results have been determined gravimetrically. BV routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. Ardea also inserted QAQC samples into the sample stream at a 1 in 10 frequency, alternating between blanks (industrial sands) and standard reference materials. Additionally, a review was conducted for geochemical values that would be expected in a nickel laterite profile. All of the QAQC data has been statistically assessed. There were rare but explai
Verification of sampling and assaying	either independent or alternative company personnel.The use of twinned holes.Documentation of primary data, data entry	 BV routinely inserts analytical blanks, standards and duplicates into the client sample batches for laboratory QAQC performance monitoring. Ardea also inserted QAQC samples into the sample stream at a 1 in 20 frequency, alternating between duplicates splits, blanks (industrial sands) and standard reference materials. All of the QAQC data has been statistically assessed. Ardea has undertaken its own further in-house review of QAQC results of the BV routine standards, 100% of which returned within acceptable QAQC limits. This fact combined with the fact that the data is demonstrably consistent has meant that the results are considered to be acceptable and suitable for reporting.
Location of data points	 drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill holes are to be surveyed using an RTK DGPS system with either a 3 or 7 digit accuracy. The coordinates are stored in the exploration database referenced to the MGA Zone 51 Datum GDA94. Gyroscopic downhole surveys were undertaken with hole orientation measurements gathered every 10m during descent and then on ascent of the tool. Topography is very flat. The topographic surface has been constructed from hole collar surveys. These are consistent with regional DTMs and are considered adequate for exploration purposes. A DGPS pickup up of drill collar locations is considered sufficiently accurate for

Criteria	JORC Code explanation	Commentary
		reporting of resources, but is not suitable for mine planning and reserves.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Aphrodite North area drill program sampling The drill spacing was defined to provide an overlapping scissor section on each of the 320mN-spaced sections of interest over the Aphrodite North area. The collars were positioned around 230-240m apart to effect overlap of the planned 250m depth. The spacing is not considered sufficient at this stage for the definition of Mineral Resources. Samples were composited over 2m for the entire drill program apart from the upper transported lake clays, which were not sampled. This is justified by the results of the previous aircore program where transported overburden was shown to be barren of mineralisation. Bulong-Taurus area rock chip program sampling Sampling was ad hoc, on exposures, either natural or in historic workings. Sampling spacing and distribution were determined by the mapping geologist to elucidate style of and constraints on mineral relationships with controlling structures.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 All drill holes in this program were angled. They were designed as scissor pairs in order to close off and intercept all possible orientations of mineralised structures at a high angle to the east-west sections. On each section, the western hole drilled toward the east, and the eastern hole drilled towards the west. This approach was undertaken due to a lack of knowledge concerning the orientation of strata and structures in the area due to a complete absence of outcrop. Other than this, hole AANR0007 was a solo hole drilled eastward to intersect anomalism thought to be associated with the uppermost contact of the dolerite sill. Without diamond drilling, the orientation of mineralised structures is unknown, but a steep west dip best fits the limited data collected to date. It is also consistent with other known mineralisation along structure to the south and north. Geological interpretation of the geology of the Aphrodite North area continues, but presently there is sufficient uncertainty to preclude definition of sampling bias or not.
Sample security	The measures taken to ensure sample security.	 All samples were collected and accounted for by ARL employees/consultants during drilling. All samples were bagged into calico plastic bags and closed with cable ties. Samples were transported to Kalgoorlie from logging site by ARL employees/ consultants and submitted directly to BV Kalgoorlie. The appropriate manifest of sample numbers and a sample submission form containing laboratory instructions were submitted to the laboratory. Any discrepancies between sample submissions and samples received were routinely followed up and accounted for.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 No audit or review beyond normal operating procedures has yet been undertaken on the current dataset. ARL has periodically conducted internal reviews of sampling techniques relating to resultant exploration datasets, and larger scale reviews capturing the data from multiple drilling programs. Internal reviews of the exploration data included the following: Unsurveyed drill hole collars (less than 1% of collars). Drill Holes with overlapping intervals (0%). Drill Holes with no logging data (less than 2% of holes). Sample logging intervals beyond end of hole depths (0%). Samples with no assay data (from 0 to <5% for any given project, usually related to issues with sample recovery from difficult ground conditions, mechanical issues with drill rig, damage to sample in transport or sample preparation). Assay grade ranges. Collar coordinate ranges Valid hole orientation data. The BV Laboratory was visited by ARL staff in 2017, and the laboratory processes and procedures were reviewed at this time and determined to be robust.

Section 2 - Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Aphrodite North area drill program The tenement on which the drilling was undertaken is M29/426. ARL, through its subsidiary companies, is the sole holder of the tenement. The tenement is in good standing. Heritage surveys over the area did not identify any areas of interest over or near the program area. Bulong-Taurus area rock chip program The tenement on which the drilling was undertaken is M25/151. ARL, through its subsidiary companies, is the sole holder of the tenement. The tenement is in good standing. Heritage surveys over the area did not identify any areas of interest over or near the program area.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Aphrodite North area drill program The target area has not been subject to systematic exploration previously. The area was identified through appraisal of regional open file datasets and proprietary targeting criteria and datasets. Nickel laterite resource drilling is located ~3km to the west, and sporadic historic gold drilling recorded in open file is evident outside the tenure to the north and south. A handful of shallow drillholes of unknown type coincide with the footprint of the current drill program but are considered to have been drilled to insufficient depth and are therefore likely ineffective. Ardea's recent aircore drilling program is the only significant drill program in the Aphrodite North area prior to this RC drill program. The data from the aircore program was used to inform the design of this RC drill program. Bulong-Taurus and Great Ophir area were subject to gold mining during the early 1900s. Historic shafts, slots, and other infrastructure are present with varying degrees of preservation. A systematic review of historic exploration is presently being undertaken. Disparate parties have undertaken limited, near-surface exploration activities over the past few decades, including shallow drill programs. The area has not been explored to depth.
Geology	Deposit type, geological setting and style of mineralisation.	 Aphrodite North area drill program The geology of the target area is still under assessment. A layered mafic intrusion is either thrust repeated or isoclinally folded near the contact of the Victorious Basalt with the basal units of the Black Flag Formation. With a complete lack of exposure, geophysics and the results of this and the previous aircore program are the only information. Bulong-Taurus area rock chip program The Taurus and Great Ophir area were subject to gold mining during the early 1900s. Historic shafts, slots, and other infrastructure are present with varying degrees of preservation. Shear zones and shear vein sets with extensive sericitic alteration are present throughout the sampled area. A sheared ultramafic/felsic contact is oblique to mineralised quartz vein sets. The target style of mineralisation at both projects is orogenic shear or vein hosted gold mineralisation. Veining and alteration styles intersected during drilling are consistent with this style of mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
Drill hole Information	 If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All assay data relating to the metals of interest at both target areas, namely gold and associated trace finder elements arsenic, antimony, silver and sulphur, are listed in "Appendix 2 – Assay results". Other elements were assayed but have not been reported here. They are of use and of interest from a scientific and metallurgical perspective but are not considered material and their exclusion does not detract from the understanding of this report.
Data aggregation	• In reporting Exploration Results, weighting	Aphrodite North area drill program

Criteria	JORC Code explanation	Commentary
methods	 averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Drill hole samples have been collected over 2 m down hole intervals. Gold intercepts are defined using a 0.5 g/t cut-off on a minimum intercept of 1 m and a maximum internal waste of 2 m. All assay samples were composited over 2 m. No metal equivalent calculations have been used in this assessment. Bulong-Taurus area rock chip program Not applicable.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Aphrodite North area drill program All drill holes in this program were angled. Without diamond drilling, the orientation of mineralised structures is unknown. At surface, several orientations are evident, but it is not apparent in RC chips. Geological interpretation of the area continues and the current best-fit geometry suggests the highest degree of representivity from the drillholes with an east azimuth, but presently there is sufficient uncertainty to preclude definition of sampling bias or not. Bulong-Taurus area rock chip program Not applicable.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps are shown in the body of the document. There is presently insufficient data to define meaningful cross sections for hole AANR0007 in the Aphrodite North area or for the Taurus and Great Ophir mines.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Not applicable to this report. All results are reported either in the text or in the associated appendices.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other data are, at this stage, known to be either beneficial or deleterious to recovery of the metals reported.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Aphrodite North area Further drilling is required to identify the extent and nature of primary mineralisation in fresh rock. A new RC program totalling 2,600m is being defined on parallel sections north and south of the currently reported intercepts on section 6666440mN section in order to better define north-south continuity. The program design is discussed in the document and will be finalised upon receipt and full interpretation of the results from all RC drill holes drilled during this program. Complete geochemical assay results (for elements other than gold) are pending for 5 drill holes. The success of a second phase of RC drilling will prompt oriented diamond drill holes that will provide structural orientation data in addition to more assay data. A preliminary metallurgical assessment of mineralisation intercepted to date will be undertaken to ensure that the deposit is amenable to economic gold recoveries. Bulong-Taurus area Ongoing mapping and interpretation is being combined with a comprehensive data mining exercise to retrieve and digitise all salient historic data. Upon completion, 3D models of mining infrastructure (surface and underground), geology, and historic exploration will be combined and assessed for gold discovery opportunities.